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1 Introduction

In 1905, Einstein published his historic paper on special relativity. Shortly
afterwards, Sommerfeld [1] answered criticisms of Einstein’s work, viz., that the
phase and group velocities of electromagnetic waves can become superluminal,
since these two kinds of velocities can exceed the vacuum speed of light inside
a dielectric medium. Note that Einstein considered wave propagation solely in
the vacuum, whereas his critics considered wave propagation in media.

Sommerfeld pointed out that while it is true that both the phase and the
group velocities in media can in fact exceed c, the front velocity, defined as
the velocity of a discontinuous jump in the initial wave amplitude from zero
to a finite value, cannot exceed c. It is Sommerfeld’s principle of the non-
superluminality of the front velocity that prevents a violation of the Einstein’s
basic principle of causality in special relativity, i.e., that no e↵ect can ever
precede its cause.

In subsequent work, Sommerfeld and Brillouin [1] showed that the “front”
is accompanied by two kinds of “precursors”, now known as the “Sommerfeld”,
or the “high-frequency”, precursor, and the “Brillouin”, or the “low-frequency”,
precursor. These precursors are weak ringing waveforms that follow the abrupt
onset of the front, but they precede the gradual onset of the strong main signal.

2 Superluminal phase velocities

It is well known that the phase velocity of electromagnetic waves can become
superluminal under certain circumstances. A simple example is the superlu-
minality of the phase velocity of an electromagnetic wave traveling within a
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rectangular waveguide in its fundamental TE
01

mode. We shall give below yet
another, more impressive, example, namely, the superluminality of the phase
velocity of X-rays in all materials. As was first noticed by Einstein, the super-
luminality of the phase velocity of X-rays in all kinds of crystals leads to the
phenomenon of total external reflection of X-rays impinging at grazing incidence
from the vacuum upon the surfaces of these crystals.

The definition of the phase velocity is best given through an example. Con-
sider a monochromatic electromagnetic plane wave traveling down the z axis of
a homogeneous dielectric medium

E(z, t) = E
0

cos(kz � !t) (1)

B(z, t) = B
0

cos(kz � !t) (2)

where ! is the angular frequency of the wave and k is its wavenumber. The
phasefronts �(z, t) of this wave are defined through the relationship

�(z, t) = kz � !t = k(z � !

k
t) = k(z � v

phase

t) = const (3)

where the phase velocity v
phase

is defined as follows:

v
phase

=
!

k
(4)

Thus a given phasefront of the electromagnetic wave satisfies the relationship

z � v
phase

t =
const

k
= const0 = z

0

(5)

It is customary to define the index of refraction n (!) of the medium through
the relationship

k = k (!) = n (!)
!

c
(6)

where c is the vacuum speed of light. Thus the phase velocity is related to the
index of refraction by

v
phase

=
!

k (!)
=

c

n (!)
(7)

For a typical transparent medium, such as a piece of glass, the index of refraction
is greater than unity, so that the phase velocity of light in glass is less than the
vacuum speed of light.

However, the index of refraction function n (!) is in general determined
by the dispersive properties of the medium, and can be less than unity. For
example, consider a medium consisting of Lorentz oscillators which obey the
simple harmonic equation of motion

ẍ+ �ẋ+ !2

0

x = eE/m (8)

where � is the damping constant of the oscillator, !
0

is its resonance frequency,
e is the charge of an electron, and m is its mass. The solution of the equation
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of motion (8) of the simple harmonic oscillator, when it is being driven by the
monochromatic electric field E written in its complex exponential form,

E = E
0

exp (ikz � i!t) (9)

is given by

x =
eE/m

!2

0

� !2 � i�!
(10)

The polarization P of the medium is therefore given by

P = n
atoms

ex =
n
atoms

e2E/m

!2

0

� !2 � i�!
= "

0

�E (11)

when n
atoms

is the number density of atoms, that is, the number density of
Lorentz oscillators. Solving for the susceptibility of the medium �, one then
finds that

� =
n
atoms

e2/m"
0

!2

0

� !2 � i�!
=

!2

p

!2

0

� !2 � i�!
(12)

where the plasma frequency is defined as

!p =
�
n
atoms

e2/m"
0

�
1/2

(13)

The dielectric constant of the medium is related to the susceptibility by the
definition

" = 1 + � (14)

Therefore the index of refraction for a medium of Lorentz oscillators is given by

n =
p
" =

p
1 + � =

s

1 +
!2

p

!2

0

� !2 � i�!
(15)

Einstein noticed that for su�ciently high frequency X-rays, i.e., those X-rays
which have a frequency above the highest possible X-ray transition frequency of
the atoms in a crystal, namely, those transitions in which the most tightly bound
electron in the ground state of the atom (i.e, the electron in the 1S state, or K
shell, closest to the nucleus) is knocked out by the X-ray into the continuum,
one can approximate the Lorentz model for the index of refraction (15) by its
high-frequency form

n
X�ray

= n (! ! 1) =

s

1 +
!2

p

!2

0

� !2 � i�!
! 1� 1

2

!2

p

!2

< 1 (16)

In other words, the phase velocity of su�ciently high-frequency X-rays in any
medium that can be modeled by Lorentz oscillators will always be superluminal.
Thus it follows that the index of refraction of any kind of crystal for X-rays of
su�ciently high energy will always be slightly less than unity. However, from
(16), it can be shown that the group velocity for these same X-rays in the same

3



Figure 1: Einstein’s total external reflection of grazing X-rays from a crystal of
Lorentz oscillators. The phase velocity for su�ciently energetic X-rays inside
the crystal will always be superluminal.

crystal will always be subluminal, since the group index (see (37)), which, at
su�ciently high frequencies, is given by

n
X�ray

+ !
dn

d!

����
X�ray

! 1 +
1

2

!2

p

!2

> 1 (17)

will always exceed unity.
Next, Einstein pointed out that Snell’s law, when applied to the vacuum-

medium interface in Figure 1 using (16), will lead to a critical angle given by

sin ✓
crit

= n
X�ray

· sin 90� = n
X�ray

< 1 (18)

Since the index of refraction is less than unity, there always will exist a solution
for the critical angle for the total external reflection of grazing-incidence X-rays

✓
crit

= sin�1 n
X�ray

(19)

The complement of this critical angle, �
crit

= 90� � ✓
crit

, which, for grazing
incidence X-rays, is given by

sin ✓
crit

= cos�
crit

⇡ 1� 1

2
�2
crit

⇡ 1� 1

2

!2

p

!2

(20)

so that the complement of the critical angle is given approximately by

�
crit

⇡ !p

!
<< 1 (21)

Now the plasma frequency lies in the ultraviolet part of the electromagnetic
spectrum, whereas X-rays lie at much higher frequencies than ultraviolet fre-
quencies. For example, for a 1 keV X-ray reflecting from gold, whose plasma
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frequency corresponds to an energy of approximately 30 eV [2], �
crit

is known
to be 3.72 degrees [3], which agrees with (21) within a factor of two.

Satellite X-ray telescopes use grazing-incidence optics, which is based on Ein-
stein’s total-external-reflection e↵ect, in order to form X-ray images of distant
astrophysical objects [3]. This demonstrates that superluminal phase velocities
have important applications.

It is a common misconception that superluminal phase velocities are unob-
servable [4]. However, as the above example of Einstein’s total external reflection
of X-rays shows, there exists at least one striking counter-example that can serve
to dispel this misconception.

3 Superluminal signaling is not possible using

superluminal phase velocities

Can one send a true signal faster than light by means of a superluminal phase
velocity? The answer is no, since the phase velocity is the velocity of the crests
(i.e., the phasefronts) of a continuous-wave, monochromatic, electromagnetic
wave. Since the amplitude and phase of a continuous wave is not changing with
time, there can be no information contained within such a waveform. As in
radio, one must introduce a truly time-dependent modulation of a continuous
“carrier” waveform (using either AM or FM modulation), before any true signal
can be sent via the carrier wave.

In the case of quantum mechanics, the wavefunction of an electron can be
written in terms of an amplitude and a phase factor as follows:

 (r, t) = A (r, t) ei�(r,t) (22)

For the special case of a monochromatic plane wave traveling in the z direction

A (z, t) = A
0

(23)

is a constant, and
� (z, t) = kz � !t (24)

so that the electron wavefunction in a momentum eigenstate has the form

 (z, t) = A
0

ei(kz�!t) (25)

Therefore the phase velocity of the electron is determined through the relation-
ship

 (z, t) = A
0

ei(kz�!t) = A
0

eik(z�
!
k t) = A

0

eik(z�vphaset) (26)

so that once again

v
phase

=
!

k
(27)

Now the Born interpretation tells us that the probability density for finding
the electron at (z, t) is given by

| (z, t)|2 =
���A

0

ei(kz�!t)
���
2

= |A
0

|2 = constant (28)
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and is therefore constant for a plane wave. Since the overall phase factor of
the wavefunction is not an observable quantity, it can be argued that the phase
velocity of the electron is not an observable quantity. However, the overall phase
factor picked up by the wavefunction can in fact be observed in interference
experiments.

However, in the case of a classical electromagnetic plane wave, the phase
velocity is an observable quantity, just as the speed of the crests of the ripples
of water waves on the surface of a pond is obviously an observable quantity.
Furthermore, the Poynting vector for a classical electromagnetic plane wave is
given by

S = E⇥H = k̂ (E
0

H
0

) cos2(kz � !t) = k̂ (E
0

H
0

)

✓
1

2
� 1

2
cos(2kz � 2!t)

◆

(29)
which clearly has a second-harmonic component that moves at the phase velocity
!/k, which can in principle be observed. No such second-harmonic component
exists in the case of the electron, as is evident by inspection of (28). However,
although the phase velocity of an electromagnetic plane wave is in principle an
observable quantity, no true signal can be transmitted by means of it.

4 Superluminal group velocities

While it is well known that phase velocities can become superluminal, it is
less well known that group velocities can also become superluminal. There
is a common misconception that the group velocity is the “signal” velocity of
physics, which relates a cause to its e↵ect. However, as we shall presently see,
the group velocity is not the velocity that relates a cause to its e↵ect. Only the
front velocity can fulfill this role.

Consider a wavepacket propagating along the z axis. In quantum theory,
such a wavepacket, for example a Gaussian wavepacket containing a single elec-
tron within it, can be represented by the Fourier integral

 (z, t) =

1Z

�1

d! ̃ (!) eik(!)z�i!t (30)

Suppose that the wavepacket is strongly peaked in its amplitude  ̃ (!) at some
frequency !

0

. It is natural then to perform a Taylor series expansion of the
wavenumber k(!) around !

0

, which yields

k (!) = k (!
0

) + (! � !
0

)
dk

d!

����
!0

+ ... (31)
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One can therefore approximate the Fourier integral (30) as follows:

 (z, t) =

1Z

�1

d! ̃ (!) exp

 
ik(!

0

)z + i (! � !
0

)
dk

d!

����
!0

z + ...� i!t

!

=

1Z

�1

d! ̃ (!) e
ik(!0)z+i(!�!0)

dk
d! |!0

z+...�i(!�!0)t
e�i!0t

= eik(!0)z�i!0t

1Z

�1

d! ̃ (!) e
i(!�!0)

dk
d! |!0

z�i(!�!0)t+...

= eik(!0)z�i!0t

1Z

�1

d! ̃ (!) e
i(!�!0)

dk
d! |!0

✓
z� dk

d! |�1

!0
t

◆
+...

/  (z � v
group

t) (32)

where the group velocity is identified as

v
group

=
dk

d!

����
�1

!0

=
d!

dk

����
!0

(33)

The meaning of the group velocity is that it is the velocity with which the peak
of the wavepacket moves.

Now for an optical medium, we saw earlier that

k (!) =
n (!)!

c
(34)

where n (!) is medium’s refractive index. It follows that

dk (!)

d!
=

1

c

✓
n (!) + !

dn (!)

d!

◆
(35)

and therefore that the group velocity is given by

v
group

=
dk (!)

d!

����
�1

!0

=
c

n (!) + ! dn(!)

d!

���
!0

(36)

The denominator of this expression for the group velocity

n
group

= n (!) + !
dn (!)

d!

����
!0

(37)

is called the “group index”. By inspection of the group index, it is apparent
that it can vanish whenever

n (!) + !
dn (!)

d!
= 0 (38)
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Figure 2: Feynman-like space-time diagram for the motion of the peaks of a
wavepacket propagating with a negative group velocity inside a superluminal
medium (in gray).

This can happen whenever there is anomalous dispersion

dn (!)

d!
< 0 (39)

i.e., whenever the index of refraction decreases with increasing frequency. When-
ever this can happen, the group velocity can become infinite, which is obviously
a kind of superluminal behavior.

By inspection of the denominator of (36), it is also clear that the group ve-
locity can become negative whenever the group index is negative, i.e., whenever

n (!) + !
dn (!)

d!
< 0 (40)

The meaning of a negative group velocity is this: Before the peak of an in-
coming wavepacket has entered the entrance face of the medium, the peak of
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an outgoing wavepacket has already left the exit face of medium. This highly
counter-intuitive, superluminal behavior in fact does not violate causality, and
has in fact been observed in many experiments [5]. It can be understood with
the help of the Feynman-like space-time diagram in Figure 2.

By taking an arbitrary time-slice between the two events A and B in this
space-time diagram, one sees that there exist three wavepackets at this moment
of time. The first wavepacket is the one coming in from the left towards the input
face of the medium, the second wavepacket is the one propagating backwards
within the medium from the output face of the medium towards the input face
of the medium, and the third wavepacket is the one leaving the output face
of the medium, and going out towards the right. Event A corresponds to an
event in which the first and second wavepackets annihilate with each other in
a “pair annihilation” event at the input face, and event B corresponds to an
event in which the second and third wavepackets are created together in a “pair
creation” event at the output face. Note that the pair-creation event precedes
the pair-annihilation event.

In computer simulations of this phenomenon, it is observed that the early,
analytic tail of a Gaussian wavepacket penetrates deeply into the medium. This
early tail of the incoming wavepacket then triggers the emission of the pair of
wavepackets at the pair-creation event B at the output face of the medium. The
backwards-propagating wavepacket is then observed to subsequently annihilate
with the incoming wavepacket at the pair-annihilation event A at the input face
of the medium. In the special case of an inverted two-level medium excited far
o↵ of resonance by the incident wavepacket, the medium loans energy from the
inverted two-level system in order to produce the two new wavepackets at B.
This the loan is repaid later to the medium at A.

Not only can the group velocity become negative, but under certain circum-
stances it also can become infinite, such as in the special case (38). We shall call
this important special case “instantaneous superluminality”, and we shall see
that it can naturally arise in some quantum many-body problems, for example,
in the quantum many-electron problem.

5 Two examples of “instantaneous superlumi-

nality” in the case of electrons

Here we illustrate the phenomenon of “instantaneous superluminality” using
two examples. The first example is the case of single electrons escaping from
the interior to the exterior of a normal metallic conductor, and the second
example is the case of Cooper pairs of electrons propagating from one end of a
superconducting island to the other.
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Figure 3: Faraday’s “ice-pail” experiment. A charged metal ball at the end of
a wooden stick is slowly and carefully lowered into the interior of a metallic
ice pail, until it contacts the bottom of the pail. Upon contact, the charge on
the ball disappears from the ball, and also from the interior of the ice pail, and
suddenly reappears on the exterior surface of the pail. Note that the metallic
bottom of the pail can be made arbitrarily thick. How suddenly does the charge
disappear from the ball and reappear on the exterior surface of the ice pail?

5.1 The deposition of charge into the interior of a normal

metallic body

Recall Faraday’s “ice-pail” experiment, which is sketched in Figure 3. Charge is
being delivered into the interior of a normal metallic body (i.e., the “ice pail”)
by means of a charged metal ball attached to the end of wooden stick (i.e.,
an insulated rod). The charged ball is being slowly lowered through the top
opening of the ice pail until it contacts the bottom of the pail. Upon contact,
the initial charge on the ball is observed to disappear from the ball, and also
from the interior surface of the ice pail. Furthermore, the charge from the ball is
observed to suddenly reappear on the exterior surface of the pail. How suddenly
does this charge transfer process occur?

There are two possible answers to this question. The first possible answer
is that the charge of the ball will initially escape from the ball along the in-

10



side surface of the pail, and then will finally reappear on the outside surface of
the pail, after the escaping charge has propagated as surface electrical currents
climbing up and over the rim of the pail. Such surface currents will propagate
at the speed of light, since magnetic fields will be generated by these currents,
and therefore will cause an electromagnetic wave to propagate along the sur-
face of the metal. Therefore this surface kind of charge transfer will not be
instantaneous, but will be retarded by the speed of light.

The second possible answer is that the charge of the ball will try to escape
as a volume electrical current directly from the point of contact of the ball with
the bottom of the pail to the nearest possible point on the exterior of the pail
(i.e., from point A to point B and its surroundings in Figure 3). Note that
shortest distance is that of the straight line joining points A and B, which lies
entirely within the volume of the metallic bottom of the pail. These volume
currents, which will flow inside the metal of the bottom of the pail, will be
driven by the electric field lines emanating from the charge on the ball. Since
no magnetic field can be generated within the interior of any metal beyond a
skin depth of the surface of the metal, no propagating electromagnetic wave
can be generated within the volume of the metal inside the bottom of the pail.
Rather, these volume currents will be driven by the instantaneous Coulomb
electric field lines emanating from the initial charge on the ball. Therefore this
volume kind of charge transfer will occur directly from A to B. It represents a
kind of instantaneous action-at-distance, and will not be retarded by the speed
of light.

This latter kind of instantaneous charge transfer process is highly counter-
intuitive, and has never been observed before. Does it really exist? In order
to understand it better, consider the following “thought experiment” depicted
in Figure 4, in which a pulsed electron beam suddenly deposits charge at the
center of a copper sphere through a radial hole. A grounded cylindrical sleeve
surrounding the incoming electron beam prevents the copper sphere from seeing
the approaching electrons, until they actually strike the center of the sphere.

The continuity equation applied to the copper sphere states that

r · j+ @⇢

@t
= 0 (41)

where j is the electrical current density flowing at any point within the sphere
and ⇢ is the charge density at that point.

Now let us assume that Ohm’s law holds at every point inside the sphere,
so that

j = �E (42)

where � is the conductivity of the copper sphere, which is composed of a ho-
mogeneous and isotropic copper material, and where E is the local electric field
inside the body, which is driving the electrical currents flowing from the center
to the surface of the sphere. Actually, all that we need to assume here is that the
local current density is linearly related to the local electric field that is driving
the currents.
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Figure 4: A pulsed electron beam enters a copper sphere (in orange) through an
insulated, grounded copper sleeve inserted within a radial hole, and stops at the
center (point A) of the sphere. The grounded copper sleeve prevents the copper
sphere from seeing the incident electrons before they strike point A. Note that
the radius of the sphere can be made arbitrarily large. How suddenly does the
charge disappear from point A and reappear at the surface, for example, at
point B?

12



Substituting (42) into (41), and using the fact that � is a constant, one gets

r · (�E) +
@⇢

@t
= � (r ·E) +

@⇢

@t
= �

✓
⇢

"
0

◆
+
@⇢

@t
= 0 (43)

where we have used Maxwell’s first equation r ·E = ⇢/"
0

. Therefore the charge
density ⇢ obeys the linear, first-order partial di↵erential equation

@⇢

@t
= �

✓
1

⌧

◆
⇢ = �

✓
�

"
0

◆
⇢ (44)

which implies an exponential decay with a time constant (i.e., the “Jeans” time
scale [6])

⌧ =
"
0

�
(45)

The solution to (44) is the exponential decay law

⇢(r, t) = ⇢(r, 0) exp(�t/⌧) (46)

According to this solution, if, initially at t = 0, the material is neutral at any
point r in the interior of the conducting body, i.e., if

⇢(r, t = 0) = 0 (47)

then it follows that at the same point r, the body must remain neutral at all
later times t, i.e.,

⇢(r, t) = 0 (48)

for all t > 0. In other words, the body at all interior points r within its volume,
during the entire charge transfer process from point A to point B, must remain
electrically neutral.

However, suppose that at a single point A, such as at the center in the
interior of the copper sphere in Figure 4 at time t = 0, the conducting body at
this point were suddenly to be made non-neutral, for example, by charge being
deposited at point A by a sudden charge deposition by the pulsed electron beam
(or, similarly, by a sudden contact of the charged ball with the bottom of the
ice pail at point A in Figure 3), so that

⇢(rA, t = 0) 6= 0 (49)

Then at all later times t > 0 following this sudden charge deposition, the charge
density at this point will decay exponentially as follows:

⇢(rA, t) = ⇢(rA, 0) exp(�t/⌧) (50)

However, all other interior points other than A that were initially electrically
neutral, must remain electrically neutral at all later times t > 0. This implies
that currents originating from the decay of the charge at A cannot accumulate
any charge at intermediate points interior to the volume of the body, since the
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divergence of the current density must vanish at all interior points due to the
solution (48). Therefore the only points where the charge can accumulate due
to the nonvanishing current density originating from the point charge deposition
at A would be at the surface on the exterior of the body, such as at point B in
Figure 4.

According to the solution (50), the charge at point A will disappear, and
will extremely quickly reappear at the surface, for example, at point B. Let us
put in some numbers to see how quickly this happens. For the case of copper,
the measured value of the conductivity is

�
Cu

= 59.6⇥ 106 S ·m�1 (51)

Therefore the decay time for the charge density at A is predicted to occur over
the extremely short time scale [7]

⌧ =
"
0

�
Cu

= 1.48⇥ 10�19 s ⇡ 0.15 attoseconds (52)

This is the time that it takes light to cross a distance of

c⌧ = 4.45⇥ 10�11 m ⇡ 45 picometers (53)

which is about the size of the Bohr radius (approximately 50 picometers). There-
fore for any macroscopically-sized copper sphere, the disappearance of the elec-
tron charge at point A and its sudden reappearance at an arbitrarily far-away
point B in the case of an arbitrarily large sphere, would be a clear example of
superluminality.

Note that no radiation can be produced in the configuration depicted in
Figure 4 due to the spherical symmetry of the time-varying currents and charges,
so that no retardation e↵ect can occur associated with the production of an
electromagnetic wave propagating in the interior at the vacuum speed of c within
the volume of the metal.

However, the spherical symmetry of Figure 4 is not a necessary condition for
the phenomenon of “instantaneous superluminality” to occur. In particular, the
breaking of the spherical symmetry of the conducting body by the hole drilled
into the copper sphere shown in Figure 4 for the purpose of the admission of
the electron beam, is unimportant, as evidenced by the known observations in
Faraday’s “ice pail” experiment depicted in Figure 3. The configuration of Fara-
day’s ice pail experiment clearly does not possess the near-spherical symmetry
of the configuration shown in Figure 4. In particular, note that the small, radial
hole in Figure 4 can be replaced by the very large opening at the top of the
ice pail in Figure 3. Nevertheless, the charge deposited by the metallic ball is
observed to disappear from the inside the ice pail, and to reappear suddenly on
the outside of the ice pail.

If the above analysis, which is based on the continuity equation and on the
linearlity of Ohm’s law, turns out to be correct, this charge transfer process
should have an unusual, instantaneously superluminal, component arising from
the internal, volume currents produced by the Coulomb field within the metal, in
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Figure 5: Feynman-like space-time diagram depicting the trajectory of the peak
of a single electron wavepacket entering the center of the metallic sphere at
point A in Figure 4. Here the group velocity of the electron must be infinite
between A and B because the electron cannot join the Fermi sea due to the
Pauli exclusion principle. It must therefore disappear at A, and must instanta-
neously reappear at B. Otherwise, charge conservation would be violated. The
horizontal trajectory between A and B represents a virtual state of the electron.
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addition to the usual, luminal component that one would expect to arise from the
external, surface currents associated with the propagation of an electromagnetic
wave.

At the quantum level, the above “instantaneous superluminality” e↵ect is
represented by the Feynman-like space-time diagram shown in Figure 5, which
describes the charge transfer process for an individual electron which is ini-
tially approaching the center of the copper sphere at point A in Figure 4, with
an energy less than the Fermi energy of copper. The electron will propagate
superluminally via a virtual quantum state from point A to point B through
the copper metal, inside which there exists a Fermi sea of identical electrons.
This sea is in an entangled state, namely, the Slater determinant state. Entan-
gled states lead to nonlocal, Einstein-Podolsky-Rosen (EPR) e↵ects, in which
instantaneous quantum correlations-at-a-distance can occur.

The electron which enters the metal at point A at the center of the sphere
will be prevented by the Pauli exclusion principle from joining the Fermi sea of
identical electrons in the interior of the metal [8]. Hence it has no choice but to
reappear suddenly on the exterior surface of the metal, for example, at pointB in
Figure 4. Due to charge conservation, the disappearance of the electron at event
A in Figure 5, and therefore the disappearance of its charge e at event A, must be
instantaneously accompanied the simultaneous reappearance — in the reference
frame of the center of mass of the Fermi sea — of an indistinguishable electron
at event B, along with the reappearance of exactly same charge e at event B.
Otherwise, charge conservation would be violated. Note that this will be true no
matter how far apart A and B are from each other. Hence instantaneous actions-
at-a-distance, in the form of Einstein-Podolsky-Rosen quantum correlations-at-
a-distance, necessarily follow from the conservation of charge.

However, note here that the single electron approaching the center of the
metal sphere will most probably go from the center to the surface of the sphere,
and not from the surface to the center. This is because the density of allowed
final states for the electron is much larger on the surface of the sphere than the
density of allowed initial states at the center. Note also that here the charge
transfer process is a dissipative one, and hence that it is an irreversible one.

Thus individual photons, which have earlier been observed to tunnel su-
perluminally through a tunnel barrier [9], are not the only particles that can
propagate through matter superluminally. Electrons can also be transferred
superluminally through matter, for example, through a Fermi sea.

5.2 Experiment to observe “instantaneous superluminal-

ity” in a long aluminum bar

We are presently performing an experiment to test the highly counter-intuitive
prediction of “instantaneous superluminality” for electron charge transfer in
normal metals. A long, thick aluminum bar (six feet long, and five inches in
diameter) has two blind holes (both about an inch deep, and half an inch in
diameter [10]) drilled into either end of the bar, so that two miniature “Faraday
ice pails” can be formed at the left and right ends of the bar, respectively
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Figure 6: Schematic of an experiment to test the prediction of “instantaneous
superluminality” in a long aluminum bar. The left cavity is for the insertion of
the “IN” coaxial cable in the first miniature “Faraday ice pail” on the left, and
the right cavity is for the insertion of the “OUT” coaxial cable in the second
miniature “Faraday ice pail” on the right. A nanosecond pulse generator is
connected to the “IN” coaxial cable, and a fast oscilloscope is connected to the
“OUT” coaxial cable. A and B are points of electrical contact with the center
conductors of the “IN” and “OUT” coaxial cables, respectively. A third coaxial
cable (not shown) is connected to point C in order to detect the luminal signal
for calibration purposes.

(see Figure 6). Two grounded coaxial cables are then inserted through thin,
insulating sleeves into the two small cavities thus formed at the left and right
ends of the long bar. Two small metal balls are soldered to the two ends of the
center conductors of these cables, so that electrical contact can be made at the
two points A and B deep inside these two miniature “Faraday ice pails”.

Charge is delivered to point A by a voltage pulse which is generated by
means of a nanosecond pulse generator connected via a coaxial cable to the
“IN” port on the left side of the aluminum bar. Most of the electric field lines
emanating from point A that are generated by this pulse will intersect with the
outer surface of bar, and will thus generate surface currents flowing along the
exterior surface of the bar. Since time-varying magnetic fields will be generated
by these surface currents, one expects an electromagnetic wave to propagate
along the surface from the left to the right end of the bar, in the usual TEM
mode of propagation. Thus a luminal pulse traveling at the vacuum speed of
light should result from such surface currents.

However, some of the electric field lines emanating from point A will take
the shortest possible path to reach point B, including the straight-line path
that directly joins A to B. Such electric field lines will stay within the interior
volume of the metal rod, and drive an internal current density through the
ohmic relationship j = �E, where � is the conductivity of aluminum. The
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analysis starting from the continuity equation given from (41) to (53) leads to
the conclusion that the extremely short Jeans time scale (45) should hold for
these volume currents.

One expects that a small fraction of the total number of electric field lines
emanating from the charge deposited at point A will remain deep inside the
volume of the metal rod at interior points during their journey from A to B.
This includes the straight electric-field line that directly connects A to B. The
fraction of internal electric field lines will be approximately given by the ratio of
the solid angle subtended by the midsection of rod with respect to source point
A, to 4⇡ steradians.

Therefore for the dimensions of our aluminum bar, we expect an attenuation
of the voltage amplitude of about a factor of a thousand in the transmission of
the instantaneously superluminal signal from A to B, relative to the voltage
amplitude of the luminal signal, which can be picked up at point C. However,
the resulting signal-to-noise ratio for detecting the pulse at B by means of a
fast oscilloscope connected to the “OUT” coaxial cable, should still be large
enough to allow for a significant detection of the instantaneously superluminal
signal. For the purposes of calibration, a third coaxial cable will be connected to
point C of Figure 6 on the surface of the rod near point B, so that the luminal
surface-current signal can also be detected and displayed on separate channel of
the fast oscilloscope for a direct comparison with the superluminal signal.

The data and the data analysis of this experiment will be presented else-
where.

5.3 Superluminal charge transfer of Cooper pairs through

a superconducting island

Figure 7 illustrates a second example of “instantaneous superluminality” for
electrons. Consider a superconducting circuit consisting of a long supercon-
ducting island, which is connected to a charge source by means of a Josephson
tunnel junction at point A on its left end, and to charge measuring device by
means of an identical Josephson tunnel junction at point B on its right end.

The superconducting island is sandwiched tightly between upper and lower
normal metallic films (made out of copper, for example), which are therefore in
intimate electrical contact with it in a bimetallic structure. These upper and
lower normal films serve to greatly decrease the island’s capacitance C

island

[11].
The charging energy for depositing even just a single charge of Q

Cooper pair

=
2e (i.e., the charge a single Cooper pair) onto the superconducting island is given
by

U
charge

=
1

2

Q2

Cooper pair

C
island

(54)

Since the capacitance of the island can be made very low, the charging energy
U
charge

for adding even just a single Cooper pair to the island can be made very
large when compared to the Josephson junction coupling energy

U
Josephson

= I
J

�
0

(55)

18



Figure 7: Charge is being transferred from point A to point B of a long su-
perconducting island (in blue). A lower normal metallic film (in orange) lies
in intimate electrical contact with it just beneath the island. Not shown is an
upper normal metallic film lying just above the island in intimate contact with
it, in a bimetallic “sandwich” structure. These normal films greatly diminishes
the capacitance of the island, so that “Coulomb blockade” occurs.

where I
J

is the critical current of the Josephson junctions and �
0

= h/2e is the
quantum of flux. Therefore it becomes highly energetically unfavorable for the
superconducting island to become charged even by a single Cooper pair. Hence,
due to the discreteness of electrical charge that arises from the quantization of
charge, the island will remain electrically neutral at all times. This leads to
a phenomenon called “Coulomb blockade”, in which all Cooper pairs are e↵ec-
tively “blockaded” from entering the island. Note that this e↵ect is independent
of the distance separating B from A.

As a consequence of the “Coulomb blockade”e↵ect, a Cooper pair enter-
ing from the left at tunnel junction A will have to instantaneously exit to the
right through tunnel junction B so as to maintain the charge neutrality of the
superconducting island, no matter how far B is from A. This kind of instanta-
neous charge transfer from A to B leads to yet another example of a Feynman-
like space-time diagram with the property of “instantaneous superluminality”,
which is sketched in Figure 8. This diagram represents the instantaneous charge
transfer of Cooper pairs of electrons through a Bose condensate of these pairs,
a process that leaves the net charge of the condensate electrically neutral at
all times (remember that the Cooper pairs initially present on the island are
neutralized by the background ionic lattice).

An important di↵erence between “instantaneous superluminality” in the case
of superconductors, as compared to the case of normal conductors, is the fact
that in former, the phenomenon is a non-dissipative one, whereas in the latter,
it is a dissipative one (compare Figures 8 and 5). However, since an experiment
can be performed at room temperature in normal metals, “instantaneous super-

19



Figure 8: Feynman-like space-time diagram of the “instantaneously superlu-
minal” charge transfer process of a Cooper pair through the superconducting
island of Figure 7 from tunnel junction A to tunnel junction B. The horizon-
tal trajectory between A and B represents a virtual state of the Cooper pair.
This is another example of a quantum-mechanical “instantaneous action-at-a-
distance”.
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luminality” will be much easier to demonstrate in the former case than in the
latter case. Nevertheless, experiments in the superconducting case could yield
larger superluminal signals, since the dilution factor arising from the solid-angle
considerations of the normal metal case would not apply.

6 Sommerfeld’s front velocity and causality in

special relativity

In light of the predictions of the above superluminal phenomena in quantum
many-electron systems, the question naturally arises: Do they violate relativity?
In order to answer this question, we need to introduce the important concept
of the “front velocity”, which is due to Sommerfeld [1].

Consider an electromagnetic carrier wave of the form

E(z, t) = E
0

cos(kz � !t)⇥(t� z/c) (56)

B(z, t) = B
0

cos(kz � !t)⇥(t� z/c) (57)

where the theta function is defined as follows: ⇥(t0) = 0 for all times t0 < 0
and ⇥(t0) = 1 for all times t0 � 0. The instant t = 0 corresponds to the sudden
turn-on of a carrier wave, initiated, for example, by the pushing of the “ON”
button of a continuous-wave signal generator located at z = 0. Thus one could
characterize the electromagnetic wave of the form given by (56) and (57) as the
“push-the-button” signal waveform, and one could think of the “front velocity”
as the “push-the-button” velocity. This discontinuous kind of waveform can
subsequently enter into any kind of medium, but the discontinuity of the theta
function, that is, the the wave front associated with the original sudden turn-on
of the carrier wave, will always travel within the medium at the vacuum speed
of light.

The discontinuity represented by the theta function in (56) and (57) con-
tains Fourier components at infinite frequency, or equivalently, at infinitely high
energy. However the index of refraction of electromagnetic waves at infinite fre-
quencies in all types of media will universally approach unity, i.e.,

n(! ! 1) ! 1 (58)

independent of the medium, since any medium will behave exactly like the
vacuum when it is excited by electromagnetic waves at infinite frequencies. In
other words, since we know that the speed of electromagnetic waves in the
vacuum is exactly c, it follows that the phase velocity at infinite frequencies,
which is equivalent to that of the front velocity, must universally also be exactly
the vacuum speed of light c, independent of the nature of the medium.

In this way, Sommerfeld showed that it is the front velocity, and only the
front velocity, that relates a cause to its e↵ect in special relativity. The theta
function in (56) and (57) is what guarantees that no e↵ect can precede its cause.
The light-cone structure of spacetime in relativity follows from the propagation
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of “signals” at the front velocity, and not from the propagation of “signals” at
the group velocity. Hence the “signal” velocity of physics, in the fundamental
sense of a “signal” that connects a cause to its e↵ect, is given by the front
velocity, and not by the group velocity.

In the two specific examples of “instantaneous superluminality” in the case
of electrons, one for normal metals and the other for superconductors, one must
again ask: Do they violate relativistic causality? The answer is again no, because
the front velocity in these two examples will be given by the velocity for electrons
with infinitely high energies, i.e., with energies much larger than the Fermi
energy of the normal metal, or of the BCS gap energy of superconductors. Such
high energy electrons will pass through these metals with a front velocity equal
to the vacuum speed of light. Again, relativistic causality is related only to
“signals” which can be transported by these extremely high-energy electrons,
and not by the infinite group velocities of the low-energy electrons depicted in
the Feynman-like diagrams of Figures 5 and 8.
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